Candida albicans
not annotated - annotated - LINNAEUS only
20173013
Streptomyces lacticiproducens sp. nov., a lactic acid-producing streptomycete isolated from the rhizosphere of tomato plants.
A novel actinomycete, designated strain GIMN4.001(T), was isolated from the rhizosphere of tomato plants grown in Guangzhou, China. The strain produced greyish white aerial mycelia, lactic acid and a large quantity of double diamond-shaped crystals on potato dextrose agar and yeast extract-malt extract agar. The colour of the substrate mycelium was not sensitive to pH. Microscopic observations revealed that strain GIMN4.001(T) produced verticillate chains of cylindrical spores. Chemotaxonomic data confirmed that strain GIMN4.001(T) belonged to the genus Streptomyces. Melanin pigments were not produced. No antibacterial activity was observed against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis or Candida albicans, but inhibitory activity was observed against Penicillium citrinum. 16S rRNA gene sequence analysis revealed that strain GIMN4.001(T) was related most closely to Streptomyces morookaense ATCC 19166(T) (98.9 % similarity) and Streptomyces lavenduligriseus ATCC 13306(T) (98.7 %). Levels of DNA-DNA relatedness between strain GIMN4.001(T) and the type strains of these species were low (14-20 %). Furthermore, strain GIMN4.001(T) could be differentiated from S. morookaense, S. lavenduligriseus and other closely related species of the genus Streptomyces based on morphological, physiological and biochemical characteristics. On the basis of its physiological and molecular properties, strain GIMN4.001(T) is considered to represent a novel species of the genus Streptomyces, for which the name Streptomyces lacticiproducens sp. nov. is proposed. The type strain is GIMN4.001(T) (=CCTCC M208214(T)=NRRL B-24800(T)).
20637818
The Candida albicans Rgd1 is a RhoGAP protein involved in the control of filamentous growth.
Rho proteins are essential regulators of polarized growth in eukaryotic cells. These proteins are down-regulated in vivo by specific Rho GTPase Activating Proteins (RhoGAP). We investigated the role of Rgd1 RhoGAP, encoded by the Candida albicans RGD1 gene. We demonstrated that CaCdc42, CaRho3 and CaRho4 proteins had an intrinsic GTPase activity and that CaRgd1 stimulates in vitro GTP hydrolysis of these GTPases. Deletion of RGD1 in C. albicans results in sensitivity to low pH as already described for rgd1Delta in Saccharomyces cerevisiae. The role of Rgd1 in survival at low pH is conserved in the two yeast species as the CaRGD1 gene complements the Scrgd1Delta sensitivity. By tagging the RhoGAP with GFP, we found that CaRgd1 is localized at the tip and cortex of growing cells and during cytokinesis at the septation sites in yeast and filamentous forms. We investigated the effect of CaRgd1 on the control of the polarized growth. Removing CaRGD1 alleles increased filamentous growth and cells lacking CaRgd1 presented longer germ tubes. Conversely, RGD1 overexpression restricted hyphae growth. Our results demonstrate that Rgd1 is critical for filamentous formation in C. albicans especially for filamentous elongation.
21073976
FungiFun: a web-based application for functional categorization of fungal genes and proteins.
FungiFun assigns functional annotations to fungal genes or proteins and performs gene set enrichment analysis. Based on three different classification methods (FunCat, GO and KEGG), FungiFun categorizes genes and proteins for several fungal species on different levels of annotation detail. It is web-based and accessible to users without any programming skills. FungiFun is the first tool offering gene set enrichment analysis including the FunCat categorization. Two biological datasets for Aspergillus fumigatus and Candida albicans were analyzed using FungiFun, providing an overview of the usage and functions of the tool. FungiFun is freely accessible at https://www.omnifung.hki-jena.de/FungiFun/.
21145409
Overexpression of the trichodiene synthase gene tri5 increases trichodermin production and antimicrobial activity in Trichoderma brevicompactum.
Trichoderma brevicompactum produces trichodermin, a simple trichothecene-type toxin that shares the first steps of the sesquiterpene biosynthetic pathway with other phytotoxic trichothecenes from Fusarium spp. Trichodiene synthase catalyses the conversion of farnesyl pyrophosphate to trichodiene and it is encoded by the tri5 gene that was cloned and analysed functionally by homologous overexpression in T. brevicompactum. tri5 expression was up-regulated in media with glucose, H(2)O(2) or glycerol. tri5 repression was observed in cultures supplemented with the antioxidants ferulic acid and tyrosol. Acetone extracts of tri5-overexpressing transformants displayed higher antifungal activity than those from the wild-type. Chromatographic and spectroscopic analyses revealed that tri5 overexpression led to an increased production of trichodermin and tyrosol. Agar diffusion assays with these two purified metabolites from the tri5-overexpressing transformant T. brevicompactum Tb41tri5 showed that only trichodermin had antifungal activity against Saccharomyces cerevisiae, Kluyveromyces marxianus, Candida albicans, Candida glabrata, Candida tropicalis and Aspergillus fumigatus, in most cases such activity being higher than that observed for amphotericin B and hygromycin. Our results point to the significant role of tri5 in the production of trichodermin and in the antifungal activity of T. brevicompactum.
21272794
Emerging opportunistic yeast infections.
A growing population of immunosuppressed patients has resulted in increasingly frequent diagnoses of invasive fungal infections, including those caused by unusual yeasts. The incidence of non-albicans species of Candida is increasing compared with that of Candida albicans, and several species, such as Candida glabrata and Candida krusei, may be resistant to azole antifungal therapy. Trichosporon species are the second most common cause of fungaemia in patients with haematological malignant disease and are characterised by resistance to amphotericin and echinocandins and poor prognosis. Rhodotorula species belong to the family Cryptococcaceae, and are a cause of catheter-related fungaemia, sepsis, and invasive disease in severely immunosuppressed patients. An increasing number of sporadic cases of invasive fungal infections by non-neoformans cryptococci have been reported in immunocompromised hosts, especially for patients with advanced HIV infection or cancer who are undergoing transplant. Other uncommon yeasts that can cause invasive disease in severely immunosuppressed patients include Geotrichum, Hansenula, Malassezia, and Saccharomyces. Host immune status is a crucial determinant of the type of invasive fungal infection a patient is at risk for. Diagnosis can be challenging and relies heavily on traditional cultures of blood and other sterile sites, although serum (1,3)-Beta-D-glucan testing might have an adjunctive role. Although rare yeasts are emerging as opportunistic human pathogens, diagnosis remains challenging and treatment suboptimal.
21511047
Milestones in Candida albicans gene manipulation.
In the United States, candidemia is one of the most common hospital-acquired infections and is estimated to cause 10,000 deaths per year. The species Candida albicans is responsible for the majority of these cases. As C. albicans is capable of developing resistance against the currently available drugs, understanding the molecular basis of drug resistance, finding new cellular targets, and further understanding the overall mechanism of C. albicans pathogenesis are important goals. To study this pathogen it is advantageous to manipulate its genome. Numerous strategies of C. albicans gene manipulation have been introduced. This review evaluates a majority of these strategies and should be a helpful guide for researchers to identify gene targeting strategies to suit their requirements.
21601645
Phr1p, a glycosylphosphatidylinsitol-anchored Beta(1,3)-glucanosyltransferase critical for hyphal wall formation, localizes to the apical growth sites and septa in Candida albicans.
Cell wall biogenesis is a dynamic process relying on the coordinated activity of several extracellular enzymes. PHR1 is a pH-regulated gene of Candida albicans encoding a glycosylphosphatidylinositol-anchored Beta(1,3)-glucanosyltransferase of family GH72 which acts as a cell wall remodelling enzyme and is crucial for morphogenesis and virulence. In order to explore the function of Phr1p, we obtained a green fluorescent protein (GFP) fusion to determine its localization. During induction of vegetative growth, Phr1p-GFP was concentrated in the plasma membrane of the growing bud, in the mother-bud neck, and in the septum. Phr1p-GFP was recovered in the detergent-resistant membranes indicating its association with the lipid rafts as the wild type Phr1p. Upon induction of hyphal growth, Phr1p-GFP highly concentrated at the apex of the germ tubes and progressively distributed along the lateral sides of the hyphae. Phr1p-GFP also labelled the hyphal septa, where it colocalized with chitin. Localization to the hyphal septa was perturbed in nocodazole-treated cells, whereas inhibition of actin polymerization hindered the apical localization. Electron Microscopy analysis of the hyphal wall ultrastructure of a PHR1 null mutant showed loss of compactness and irregular organization of the surface layer. These observations indicate that Phr1p plays a crucial role in hyphal wall formation, a highly regulated process on which morphogenesis and virulence rely.
21820070
Application of the systematic "DAmP" approach to create a partially defective C. albicans mutant.
An understanding of gene function often relies upon creating multiple kinds of alleles. Functional analysis in Candida albicans, a major fungal pathogen, has generally included characterization of mutant strains with insertion or deletion alleles and over-expression alleles. Here we use in C. albicans another type of allele that has been employed effectively in the model yeast Saccharomyces cerevisiae, a "Decreased Abundance by mRNA Perturbation" (DAmP) allele (Yan et al., 2008). DAmP alleles are created systematically through replacement of 30 noncoding regions with nonfunctional heterologous sequences, and thus are broadly applicable. We used a DAmP allele to probe the function of Sun41, a surface protein with roles in cell wall integrity, cell-cell adherence, hyphal formation, and biofilm formation that has been suggested as a possible therapeutic target (Firon et al., 2007; Hiller et al., 2007; Norice et al., 2007). A SUN41-DAmP allele results in approximately 10-fold reduced levels of SUN41 RNA, and yields intermediate phenotypes in most assays. We report that a sun41Delta/Delta mutant is defective in biofilm formation in vivo, and that the SUN41-DAmP allele complements that defect. This finding argues that Sun41 may not be an ideal therapeutic target for biofilm inhibition, since a 90% decrease in activity has little effect on biofilm formation in vivo. We anticipate that DAmP alleles of C. albicans genes will be informative for analysis of other prospective drug targets, including essential genes.
22056521
Accumulation of P-bodies in Candida albicans under different stress and filamentous growth conditions.
Candida albicans is an opportunistic fungal pathogen that grows as budding yeast, pseudohyphal, and hyphal forms. In response to external signals, C. albicans switches rapidly among these forms. mRNA-containing cytoplasmic granules, termed processing bodies (P-bodies), have been reported to accumulate under various environmental stress conditions in diverse species from yeast to mammals. Here, we provide the first microscopic and genetic characterization of P-bodies in C. albicans. The core components of P-bodies, including the decapping machinery (Dcp2 and Dhh1), 5'-3' exoribonuclease (Kem1/Xrn1), and the P-body scaffolding protein (Edc3), were identified and their localizations with respect to P-bodies were demonstrated. Various growth conditions, including glucose deprivation, hyperosmotic stress, and heat stress, stimulated the accumulation of P-bodies. In addition, we observed P-body aggregation during hyphal development. The deletion mutant strain edc3/edc3 had a defect in filamentation and exhibited a dramatic reduction in the number of P-bodies. These results suggest that Edc3 plays an essential role in the assembly and maintenance of P-bodies in C. albicans, and that the switch to filamentous growth appears to accompany P-body accumulation.
20817114
Activation of the heat shock transcription factor Hsf1 is essential for the full virulence of the fungal pathogen Candida albicans.
The evolutionarily conserved heat shock transcription factor Hsf1 plays a central role in thermal adaptation in the major fungal pathogen of humans, Candida albicans. Hsf1 becomes hyperphosphorylated in response to heat shock and activates the transcription of genes with heat shock elements (HSEs) in their promoters, these genes contributing to thermal adaptation. However, the relevance of Hsf1 activation to C. albicans virulence is not clear as this pathogen is thought to be obligately associated with warm blooded animals, and this issue has not been tested because HSF1 is essential for viability in C. albicans. In this study, we demonstrate that the HSE regulon is active in C. albicans cells infecting the kidney. We also show the CE2 region of Hsf1 is required for activation and that the phosphorylation of specific residues in this domain contributes to Hsf1 activation. C. albicans HSF1 mutants that lack this CE2 region are viable. However, they are unable to activate HSE-containing genes in response to heat shock, and they are thermosensitive. Using this HSF1 CE2 deletion mutant we demonstrate that Hsf1 activation, and hence thermal adaptation, contributes significantly to the virulence of C. albicans.
21511048
The contribution of the S-phase checkpoint genes MEC1 and SGS1 to genome stability maintenance in Candida albicans.
Genome rearrangements, a common feature of Candida albicans isolates, are often associated with the acquisition of antifungal drug resistance. In Saccharomyces cerevisiae, perturbations in the S-phase checkpoints result in the same sort of Gross Chromosomal Rearrangements (GCRs) observed in C. albicans. Several proteins are involved in the S. cerevisiae cell cycle checkpoints, including Mec1p, a protein kinase of the PIKK (phosphatidyl inositol 3-kinase-like kinase) family and the central player in the DNA damage checkpoint. Sgs1p, the ortholog of BLM, the Bloom's syndrome gene, is a RecQ-related DNA helicase; cells from BLM patients are characterized by an increase in genome instability. Yeast strains bearing deletions in MEC1 or SGS1 are viable (in contrast to the inviability seen with loss of MEC1 in S. cerevisiae) but the different deletion mutants have significantly different phenotypes. The mec1Delta/Delta colonies have a wild-type colony morphology, while the sgs1Delta/Delta mutants are slow-growing, producing wrinkled colonies with pseudohyphal-like cells. The mec1Delta/Delta mutants are only sensitive to ethylmethane sulfonate (EMS), methylmethane sulfonate (MMS), and hydroxyurea (HU) but the sgs1Delta/Delta mutants exhibit a high sensitivity to all DNA-damaging agents tested. In an assay for chromosome 1 integrity, the mec1Delta/Delta mutants exhibit an increase in genome instability; no change was observed in the sgs1Delta/Delta mutants. Finally, loss of MEC1 does not affect sensitivity to the antifungal drug fluconazole, while loss of SGS1 leads to an increased susceptibility to fluconazole. Neither deletion elevated the level of antifungal drug resistance acquisition.